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Abstract 
 
Cone Penetration Testing (CPT) provides detailed information about soil type and associated 
design parameters. Ultra Violet Induced Fluorescence Cone Penetration Testing (CPT-UVIF) 
has been used frequently in environmental site characterization to delineate subsurface 
stratification as well as lateral and vertical hydrocarbon distribution. The information 
collected during site investigation provides a basis for further site investigations and for 
evaluating the applicability of various remedial techniques. This information, however, is 
incomplete which translates to uncertainty in bounding the problem and increases the risk of 
regulatory non-compliance or excess costs. To attain a better understanding of geological 
structure and NAPL distribution, this uncertainty should be assessed and quantified. Using 
geostatistical techniques, models of uncertainty for geological structure and non-aqueous 
phase liquid (NAPL) distribution have been developed for a hydrocarbon impacted site. In 
conjunction with CPT data analysis techniques, the Sequential Indicator Simulation (SIS) 
approach has been used to determine the site lithology and extent of contaminant source 
zone. The original spatial continuity is captured and trends are reproduced. Based on the 
models of uncertainty for geological structure and contaminant source zone and their 
association, a conceptual model can be developed for the site. Results of this work will 
ultimately provide a framework for subsequent numerical modeling of natural attenuation of 
petroleum hydrocarbons at the site.   
 
 
Introduction  
 

Risk and uncertainty are characteristics of the ground and never can be eliminated, 
but can be quantified. Even with combination of most extensive site investigation schemes, 
only a small portion of ground can be fully characterized. In every geo-environmental 
engineering project, there are a number of important objectives for site investigations. These 
include nature and sequence of the subsurface strata, groundwater conditions, physical 



properties of subsurface strata (e.g. hydraulic conductivity), and distribution and composition 
of contaminants.  

 
Cone Penetration Testing (CPT) has two main applications in the site investigation 

processes associated with geo-environmental applications. One is to determine sub-surface 
stratigraphy and identify materials present; and the other is to estimate geo-engineering 
parameters (Lunne, Robertson and  Powell 1997). In geo-engineering practice, CPT has been 
used frequently for soil profiling and classification. There is an extensive experience in 
relating CPT results to soil type. Experience has shown that typically the cone penetration 
resistance is high in sands and low in clays and the dimensionless ratio between sleeve-
friction and cone resistance (friction ratio) is low in sands and high in clays. CPT data 
provide a repeatable index of the aggregate behavior of the in-situ soil in the immediate area 
of the probe. The prediction of soil type based on CPT results is usually referred to as soil 
behavior type (Robertson 1998). One of the most commonly used CPT soil behavior type 
(SBT) charts is the one suggested by Robertson et. al. (Robertson et al. 1986). Figure 1(a) 
shows this soil behavior type classification chart.   

 
  
 

 
 
 
                        
 
 
 
 
 
 
 
 

Figure 1: (left) non-normalized soil behavior type classification chart (Robertson et al. 1986) and 
(right) grouping SBTs into three categories based on their estimated hydraulic conductivities.  

 
 
SBT classification charts give an estimate of hydraulic conductivity of soils. 

Although these estimates are approximate, they can provide a guide to variations of hydraulic 
conductivity at sampling locations. In order to use the SBT charts in subsequent geostatistical 
modeling and to prevent the large-scale geological features from being masked by unrealistic 
short-scale variations, all SBTs are grouped into three different categories. These categories 
will be used as inputs for Sequential Indicator Simulation (SIS) technique to generate: (1) 
equi-probable realizations of geological structure for use in reproduction of hydraulic 
conductivity, and (2) probability maps showing continuity of geological strata at the site.     

 
Delineation of source zone is a very important step in environmental site 

characterization for sites impacted by petroleum hydrocarbons (PHCs). Non-aqueous phase 
liquids (NAPLs) composed of aromatic hydrocarbons can be successfully detected by 



fluorescence. Commercially available Ultra Violet Induced Fluorescence Cone Penetrometer 
(CPT-UVIF) is a standard CPT cone combined with a detecting tool for ultraviolet induced 
fluorescence. The UVIF module consists of a high intensity UVIF light projected into the 
surrounding soil and a photo multiplier tube sensor to record fluorescence. The currently 
available CPT-based fluorescence systems are typically restricted to a single wavelength 
excitation source, each demonstrating specific advantages and disadvantages with respect to 
detection capabilities for particular fluorophores (Kram et al. 2004). According to CCME 
criteria, the wavelength used in this study is corresponding to C34 to C50 (F4) fractions 
(Canadian Council of Ministers of the Environment 2001).  

 
In previous studies, the magnitude of fluorescence was directly related to the relative 

concentration of aromatic PHCs present in the soil (Armstrong, Deutsch and  Biggar 2004). 
Using indicator simulation techniques, in this study, a newer approach is taken by 
development of a model of absence/presence for NAPL contamination to remove effects of 
aggregate size on UVIF recordings. This approach introduces a risk-based framework for 
contaminant source distribution. Continuity of hydrocarbon impacted zones is better 
reproduced. Effects of other controlling factors such as geological structure and stratification 
are also added to the model to improve the model of source zone.   

 
This study was performed as part of a larger research project termed CORONA 

(Consortium for Research on Natural Attenuation) to assess Monitored Natural Attenuation 
as a cost-effective scheme for remediation of upstream oil and gas sites (exploration and 
production industry). The findings of this study are used in subsequent fate and transport 
modeling to develop a risk-based approach to prediction of Natural Attenuation at upstream 
oil and gas sites.   
 

 
 
Figure 2: (left) locations of boreholes, monitoring wells and CPT-UVIF holes; and (right) Locations 

of 18 CPT-UVIF holes as well as domain for geostatistical study.  



Hydrocarbon Impacted Site 
 

The study site is a former flare pit site located in west-central Alberta close to the 
town of swan hills. Solid stem auger method was used for initial drilling. Soil logs showed 
heterogeneous distribution of clay, silt and sandy units (Armstrong, Deutsch and  Biggar 
2004). The location of the former flare pit is roughly known to be in the north of the site. The 
exact limits, however, are not known. The site slopes from north to south. A few years ago, 
heavily contaminated soil at the north of the site was excavated to depths of 4 – 5 m and 
backfilled with clean soil. According to initial soil sampling analysis, free-phase 
hydrocarbons (NAPLs) were suspected to remain at the site. However, its presence had not 
been confirmed in the four nearest monitoring wells. The site was characterized through 
logging and sampling 16 boreholes drilled using the solid stem auger method to 
approximately 5 m below ground surface. Based on these data, 18 CPT-UVIF holes were 
advanced in two phases. The holes ranged in depth from 4 to 11 m below ground surface 
(Armstrong, Deutsch and  Biggar 2004).  Figure 2 shows the locations of sampling points, 
monitoring wells as well as CPT-UVIF holes and geostatistical modeling domain. The 
modeling domain is 60 m in east-west direction, 80 m in north-south direction, and 16 m in 
depth.     
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: (left) Cone resistance vs. friction ratio values for 18 CPT cones; and  
(right) histogram of declustered soil type data.  

 
 
Geostatistical analysis for geological structure  
 

The decision of which data should be pooled together for subsequent analysis is the 
“decision of stationarity” (Deutsch 2002). In other words, the decision of stationarity implies 
that mean (or prior probability) is independent from location (Goovaerts 1997). The decision 
of stationarity may be revised based on further steps of data analysis. For instance, while 
observing a bimodal (two peaks) histogram for data, one might want to consider separating 
the data into two classes with distinct statistical and geological properties (Deutsch 2002). In 
fact, separating the data set into more homogenous geologic and hydrogeologic zones 
improves the accuracy of the estimates. Indicator kriging offers an alternate method that is 
more appropriate for data showing non-stationarity in its basic statistics. Using indicator 
kriging to identify various ‘soil types’ or geological regions with distinct statistical and 



geological features enhances data homogeneity within sub-regions and makes the decision of 
stationarity more appropriate (Rouhani and  ASTM Committee D-18 on Soil and Rock 
1996).   

 
For every hole, CPT-UVIF tool records cone resistance, sleeve friction, pore pressure 

and ultraviolet induced fluorescence at approximately every 5 cm. Plotting cone resistance 
vs. friction ratio for every data location, one can observe distribution of data throughout the 
site and can identify different soil types. Using the plotted data (figure 3) and SBT chart 
(figure 1), geological structure can be grouped into three sub-regions comprising soils with 
distinct statistical and hydrogeological features. Configuration of sampling points is clustered 
at the site which means all the data are not equally representative in summary statistics and 
must be weighted. Cell declustering is performed in this study using declus program in 
GSLIB (Deutsch and  Journel 1998). The resulted histogram of soil type data is displayed in 
figure 3. According to Robertson (Robertson 1998), each of these three soil types has an 
estimated range of hydraulic conductivities. Soil type one, with a frequency of 29.5 %, has 
hydraulic conductivity values approximately ranging from 1 × 10-11 m/s to 1 × 10-8 m/s. For 
soil type two, having a frequency of 55 % and covering majority of the site, hydraulic 
conductivity values approximately range from 1 × 10-9 m/s to 1 × 10-5 m/s.  Soil type three, 
with a frequency of 15.5 %, has hydraulic conductivity values approximately ranging from 1 
× 10-5 m/s to 1 × 10-2 m/s.      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 4: (top) A five-layer geological structure, samples taken from layer 3; and (bottom) Various 
coordinate transformation scenarios are calculated and shown. The shaded composites represent 

horizontal variogram calculation pairs (McLennan, 2004)  
 
 



Identifying directions of geological continuity  
  

In presence of stratification and layering in geological structure, the decision of 
stationarity may no longer be appropriate. Even though all data have been already splitted 
into three groups based on their statistical and geological features, it is still needed to 
delineate right directions of geological continuity and detect any inclination in geological 
units. This requirement is a direct result of two important facts: (1) in geostatistical analysis 
the model is constructed on a Cartesian grid; and (2) the bounding surfaces between the 
layers correspond to a specific geologic time that separates two different periods of 
deposition or a period of erosion or consolidation followed by deposition, and are not often 
horizontal (Deutsch 2002). Thus, prior to calculation of directional variograms for different 
categories, a vertical coordinate transformation must be performed, considering various 
common deposition-erosion or consolidation-erosion scenarios.  

 
As a standard practice, horizontal variograms are calculated after each coordinate 

transformation and the scenario showing highest degree of correlation is retained and the rest 
of the geostatistical modeling is done in the new coordinate system. The final results will be 
ultimately back-transformed to original coordinate system. Four different deposition-erosion 
scenarios are schematically shown in figure 4. For the present site, the original vertical 
coordinates happened to show highest degree of continuity (elevation scenario). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: dashed lines and solid lines show calculated (experimental) and modeled variograms, 
respectively; (left) Horizontal variogram for soil type 2; (right) Vertical variogram for soil type 2  

 
 

Modeling indicator variograms                 
 

Unlike Gaussian techniques, indicator formalism is capable of incorporating different 
spatial continuity for different categories. Indicator variograms are calculated for each 
category using the available site-specific data. The data used in calculation of indicator 
variograms are the data which have been transformed to soil type indices (1’s, 2’s and 3’s for 
three different soil types). Figure 5 shows calculated and modeled variograms in horizontal 
and vertical directions for soil type 2. Similar directional variograms calculated and modelled 



for soil types 1 and 3.Sills of all variograms are calculated by ( )pp −1  where  is the 
global proportion of indicator variable before declustering. Range of a variogram is 
horizontal distance between the origin of the variogram and the point in which variogram 
reaches to the sill. As the range becomes larger, a smaller variability is observed in nearby 
data. As comparing the ranges of vertical and horizontal variograms in figure 5, the effect of 
stratification can be clearly observed. It should be noted that spherical structure has been 
used in modeling variograms for all three soil types. Variogram calculation and modeling has 
be performed using GSLIB (Deutsch and  Journel 1998).   

( )kzFp =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Two equi-probable realizations showing distribution of three soil types throughout the site. 
Theses realizations honor the input data (site-specific samples) and input statistics very well. The 

above slices are planar views taken at mid-height of the modeling domain.   
 

Indicator kriging and Sequential Indicator Simulation (SIS)           
 

Indicator kriging (IK) (Deutsch and  Journel 1998) and simulation are used to directly 
estimate the distribution of uncertainty in the categorical variables. As the first step in 
indicator formalism, site-specific data at every data location is coded as indicator values 
(Deutsch 2002): 
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The stationarity prior probabilities of different soil types ( ) have 
been determined using histogram of declustered data (figure 3).Based on figure 
3, , , and

( ) 3,2,1, =kkp

( ) 295.01 =p ( ) 55.01 =p ( ) 155.01 =p . According to (1), residual data can be written 
as:  
 
( ) ( ) (kpkizY k −= ;; αα uu ) ,     α = 1, 2, … , n,     k = 1, 2, 3                                                   (2) 



According to Deutsch (2002), kriging of these residual data is used to derive the probability 
of occurrence of each soil type at every unsampled location. Thus, the model of uncertainty 
at every unsampled location u will be:  
 

( ) ( ) ( ) ( )[ ] ( )kpkpkikkp
n
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α

αλ uu ,       k = 1, 2, 3                                                     (3) 

 
where subscript IK denotes Indicator Kriging, λα’s are weighting factors which account for 
closeness to data points as well as overall uncertainty in the domain and redundancy in 
nearby data. These weighting factors are calculated using the Simple Kriging (SK) system of 
equations. Variogram measures of correlation are used in constructing the SK system of 
equations.  
 

The estimated probabilities must be non-negative and sum to one. As these 
requirements are not often fully satisfied by indicator kriging (IK) with categorical variables, 
a post-correction procedure is often performed.   

 
Sequential Indicator Simulation (SIS) (Deutsch and  Journel 1998) is a Monte Carlo 

simulation technique built on Indicator Kriging (IK) explained above. In order to populate 
the whole modeling domain with simulated values, grid nodes are visited sequentially in a 
random path. At each grid node the following procedure is repeated (Deutsch 2002): (1) 
searching for nearby data and previously simulated values, (2) performing IK to build a 
distribution of uncertainty, and (3) drawing a simulated value from the distribution of 
uncertainty.  
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Figure 7: Two cross-sectional views of the 3D likelihood map for soil types. There is a large sandy 
layer (soil type 3) on northwest of the site. While, south of the site is mainly comprised of lower 

permeability units (soil types 1 and 2). Topography has been also displayed. Site generally slopes 
from the north to the south.      



Analyzing and post-processing of the results          
 

As a result of Sequential Indicator Simulation, a large number of equi-probabale soil-
type realizations are generated (figure 6). These realizations reproduce the input data equally 
well. There are a number of checks which have been done to validate the model as a fairly 
good representative for the unknown reality: (1) reproduction of input statistics such as 
histogram and variograms, (2) honoring input data, (3) consistency with the available 
information about geology of the site, as well as checking the model predictions by (4) 
closeness of estimated probabilities to the true soil types (both for CPT cones as well as 
borehole logs), and (5) accuracy of the local probabilities. 

 
As observed in figure 6, SIS realizations are often show unrealistic short-scale 

variations. Using ‘maximum a-posteriori selection’ technique (MAPS), (Deutsch and  Journel 
1998), the realizations are cleaned from these short-scale variations and slight deviations 
from global proportions (order relations problem) are controlled and fixed.  

 
The cleaned realizations are then used in (1) development of a 3D likelihood map for 

‘Soil Type’ in the modeling domain, (2) stochastic simulation of hydraulic conductivity 
throughout the site, and (3) development of a prior probability map for NAPL contamination.  

 
Figure 7 shows two cross-sectional views of the 3D likelihood map for soil type as 

well as CPT cones. The magnitude of cone resistance is shown on the wells. As shown in the 
cross-sectional views, there is a large sandy layer (soil type 3) in depths from 1 m to 7 m 
extended to the northwest of the site. While, south of the site is mainly comprised of lower 
permeability units (soil types 1 and 2). Topography has been also displayed. Site generally 
slopes from the north to the south. Very high likelihood for presence of a large sandy layer 
(in specific depths) on the northwest of the site should be considered in design of any 
remediation scheme. South of the site (especially in smaller depths) is less likely to be a good 
pathway for contaminants to further downstream. Deeper areas on the south, however, are 
more likely to be good pathways for transport of contaminants. It should be brought into 
attention that, based on independent site observations (borehole logs), the results of the 
model show the continuity and extent of geological features very well.           

 
The generated soil-type realizations are also used in reproduction of hydraulic 

conductivities for subsequent use in fate and transport modeling. When plotting histogram of 
sparse hydraulic conductivity data from the site, it is observed to be highly skewed and has a 
tri-modal shape. Assigning separate Gaussian distributions of hydraulic conductivity (with 
different means and variances) to each of the three soil types ensures reproduction of the tri-
modal shape for hydraulic conductivity distribution in every realization. These equi-probable 
realizations may then be used as inputs for stochastic (Monte Carlo) simulation of fate and 
transport for dissolved contaminants.  

 
The soil-type realizations are also used in development of a 3D prior probability map 

for presence of free-phase product (NAPL) at the site. Later in this paper, correlation 
between soil type and presence of NAPL is discussed and the prior probability map will be 
developed.    



 
 
Geostatistical analysis for contaminant source zone  

 
As stated before, UVIF data may be unrealistically affected by aggregate size. This 

introduces an artifact in distribution of free-phase product, if one directly relates UVIF data 
to NAPL concentrations. In order to avoid this artifact, a threshold is introduced in this study 
and a model of presence/absence is developed for NAPL contaminants. Results of this 
modeling effort introduce a risk-based framework for contamination.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: (left) Histogram of declustered binary TUVIF data for NAPL contamination  

 
 

First, a model of contaminant source zone is developed solely based on available 
UVIF data. This model, however, does not show the lateral spread of contaminant plume 
appropriately. In order for the NAPL plume to conform important geological features, the 
site-specific correlation between presence of NAPL and type of soil is studied and 
incorporated into the model as secondary information. The results of this ‘co-simulation’ are 
then compared to those of the original model of contaminant source zone.  
 
Modeling contaminant source zone using Truncated UVIF (TUVIF) data          

 
The recorded UVIF data is in units of volts. For this site, the minimum and maximum 

recorded values for UVIF are 0.4 and 8.79 volts, respectively. After a series of sensitivity 
analyses, a threshold of 1.2 has been selected to truncate the data and develop a binary 
absence/presence model. Selection of this threshold is an important step and it is still subject 
to further research. It should be kept in mind that this threshold must be chosen in a way to 
prevent carbon content of the soil from being identified as NAPL contamination. On the 
other hand, it must be selected in a way that truncated data does not miss any free-phase 
product present in the soil.  

 
 



 
Figure 8 shows histogram of binary absence/presence data. According to Figure 8, 10 

percent of the data are identified as contaminated. Assuming stationarity in the data, this 
means 10 percent of the whole site is considered contaminated.  

 
Figure 9 shows directional indicator variograms for TUVIF data. The ranges of 

variograms in binary models are related to the perimeter of the objects (or plumes in this 
study) in a 3D space (Monestiez, Allard and  Froidevaux 2001). This relationship may be 
used to obtain an estimate of average sizes of plumes.  

 
Indicator kriging (IK) and sequential indicator simulation (SIS) are performed after 

variogram modeling. According to equation (3), indicator kriging gives an estimate of local 
uncertainty at every location. GSLIB (Deutsch and  Journel 1998) was used to perform 
indicator kriging and SIS. SIS procedure for modeling the source zone is the same as 
procedure for the model of soil types presented above.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: dashed lines and solid lines show experimental and modeled variograms, respectively;  
(left) Horizontal variogram and (right) Vertical variogram for model of contamination  
 
 
A large number of equi-probable realizations will be generated. These realizations are 

used in development of a 3D probability map for contamination. Defining a series of 
probability thresholds, the probability map can be visualized in a risk-based format. Figure 
10 shows planar views of a series of 3D risk maps. Each of these risk maps shows extent of 
NAPL plume for a certain degree of associated risk. For instance, for the map with an 
associated risk of 90 percent, there is a 90 percent or more probability for the soil in the 
marked areas to be contaminated. Figure 11 shows lateral and vertical extent of NAPL plume 
with an associated risk of 30 percent or more. As shown in figure 11, the plume seems to 
have a bulky shape and does not follow stratification patterns observed in soil structure 
(figures 7). Based on this, it is required to some how incorporate the model of geological 
continuity and soil structure into the model of NAPL plume. As observed later in this study, 
the plume will be unrealistically small and bulky, if stratification is not taken into account.        
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Figure 10: Planar views of risk maps showing extent of NAPL plume for different levels of risk:  
(a) 90 percent, (b) 70 percent, (c) 50 percent, and (d) 30 percent.     

 
 

Modeling contaminant source zone using TUVIF data and model of geological structure as 
secondary information          
 

The model of geological structure can be successfully used as secondary information 
to improve the model of source zone. There are a number of reasons for this:  

 
1. There is an evident correlation between presence of free phase product (NAPL) and 

grain size of aggregates: The larger grain sizes and pore spaces, the more likely 
presence of free phase product; 



2. More information is often available about geological structure. Moreover, obtaining 
information about geology of the site is often much cheaper, easier and more reliable 
as compared to gathering information about contaminant distribution; 

3. Unlike contaminant distribution, geological structure often shows higher ranges of 
correlation and larger distances of continuity. This can be observed in figures 5 and 
9. In fact, direction of continuity and inclination of strata play important roles in 
prediction of NAPL distribution in subsurface.            

 
 
     

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

West East 

North South

 
Figure 11: Cross-sectional views of risk maps showing vertical and lateral extent of NAPL plume for 

a risk of 30 percent.     
 
 

To incorporate the geological model in the model of source zone as secondary 
information, first of all, correlation between site-specific soil type data and TUVIF data must 
be determined. Table 1 shows this correlation. According to the table, whenever soil type 3 is 
observed at a location, there is a probability of 14.67 percent for that location to be 
contaminated. This probability is 8.95 for soil type 2 and 8.68 for soil type 1. The cokriging 
estimate is written by:       
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                                                                      (4) 

in which,  is probability of presence of NAPL at location u, ( ki ;ˆ
αu ( )ki ;αu  is indicator data  

for presence or absence of NAPL (a binary variable) and is defined in a way similar to 
equation (1), λα’s are weighting factors which account for closeness to data points as well as 
overall uncertainty in the domain and redundancy in nearby data. The term ( )( )uaikp  
represents prior probability for presence of NAPL. This is a location-dependent attribute and 
is calculated by assigning the correlation factors summarized in table 1 to a large number of 
equi-probable soil-type realizations (figure 6). According to equation (4), at every location of 



the modeling domain, ( )( uaikp ) receives a higher weight when there are smaller number of 
data in close proximity of location being estimated and vice versa.  
 
 

9010Weighted Average

85.3314.67Soil Type 3

91.058.95Soil Type 2

91.328.68Soil Type 1

Absence (%)Presence (%)

9010Weighted Average

85.3314.67Soil Type 3

91.058.95Soil Type 2

91.328.68Soil Type 1

Absence (%)Presence (%) 
 
 
 
 
 
 

Table 1: Correlation factors between soil type data and presence of contamination 
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Figure 12: Planar views of risk maps showing extent of NAPL plume, resulted from cosimulation 
for different levels of risk: (a) 90 percent, (b) 70 percent, (c) 50 percent, and (d) 30 percent.     



The results of the co-simulation are shown in figures 12 and 13. Comparing figure 13 
to figure 11, one can evidently observe capability of the co-simulation in modeling lateral 
continuity of NAPL plumes. Also, comparing figure 12 to figure 10 shows if the geological 
continuity is not incorporated into the model of source zone, size and lateral extent of the 
plume may be significantly under-estimated. 

 
The risk maps, developed for contaminant source zone, clearly show extent of 

contamination for different risk levels. These are valuable tools for sample optimization 
purposes, whenever additional sampling is required. Including other controlling factors, such 
as groundwater fluctuations, as secondary variables can also enhance prediction capability. 
The risk maps and likelihood maps can also be used in conjunction with other design factors 
to increase effectiveness of active remediation schemes to reduce the overall cost of 
remediation projects.  
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Figure 13: Cross-sectional views of risk maps, resulted from cosimulation, 
 showing vertical and lateral extent of NAPL plume for a risk of 30 percent. 

 
 
Conclusions 
 

Geostatistical Modeling is a powerful tool in studying geological structure by   
providing information about continuity of subsurface strata and location of high     
permeability conduits. It is also applicable in reproduction of representative hydraulic 
conductivity values throughout the site.  

 
Geostatistical analysis can be used to delineate contaminant source zone and gives an 

estimate of plume size. The model of contaminant source zone can be successfully improved 
by incorporating some secondary information such as geological structure. This secondary 
information can be any property which is some how quantifiable. Indicating directions of 
maximum likelihood for contamination and lateral and vertical extent of NAPL plume, the 
model can be used in sampling optimization programs, when the site is subject to additional 
sampling.   
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